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In this paper, analytic formulations and their results are presented to extend the
receptance method to a clamped–free cylindrical shell with a plate attached in the shell at
an arbitrary axial position. Prior to the analysis of the combined system, the analysis of
the free vibration for the shell without a plate was performed by the Rayleigh–Ritz method
with a beam function. The integration of the beam functions was performed symbolically
by Mathematica and was incorporated in a solution program that could be run in a
personal computer. After getting the eigensolution of the simply supported circular plate,
the frequency equation of the combined system was obtained by considering the continuity
condition at the shell/plate joint. The numerical results were compared with the results from
ANSYS, as well as a free vibration test, to validate the formulation. The comparison
showed that the analytic results agreed with those from ANSYS and the test.
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1. INTRODUCTION

Many analyses of the free vibration of clamped–free cylindrical shells by means of the
Rayleigh–Ritz method have been presented in the literature [1–5]. The Rayleigh–Ritz
method was commonly used when the general solution was either hard to find or very
cumbersome to manipulate. This method yields an exact frequency equation when the
exact modal functions, which satisfy the geometric as well as the natural boundary
conditions of a given problem, are chosen [6]. A beam function has been widely used as
the modal function of a cylindrical shell in the axial direction. When a beam function is
assumed to be a modal function of the shell, the integration of the function along the shell
length, which is quite difficult, is required. However, owing to the brilliant development
of packages for manipulating functions, such as Mathematica [7], it has been no longer
hard to manage these functions. Yim et al. [8] presented the analysis of a cantilevered shell
with a beam function where it was shown how to get the cumbersome integration of the
beam functions without any difficulties.

The receptance method was introduced by Shkarov [9] for combined structures. Huang
and Soedel [10, 11] presented the results of an analysis of the free vibration of both ends
of a simply supported cylindrical shell with a plate at an arbitrary axial position using the
receptance method. Since the boundary condition of the problem was the simple supported
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condition at both ends, a symmetric simple trigonometric function, i.e., a sine function,
was assumed as the modal function.

If a plate is attached in a clamped–free cylindrical shell at an arbitrary axial position,
such as a storage tank or silo with a flat circular plate, this combined structure may be
analyzed by various methods. Suzuki et al. [12] analyzed the free vibration of a cantilevered
shell with a circular plate attached at the top by applying Mindlin theory to the plate. Irie
et al. [13] presented an analyses of the free vibration of a joined conical-cylindrical shell
by way of the transfer matrix technique. Tavakoli and Singh [14] presented the
eigensolution of joined/hermitic shell structures using the state space method.

Of course, the finite element method may be another powerful solution method for the
combined structures. However, the preparation of input for the solution still takes much
time and the post-process to interpret the solution is also difficult. The commercial FEM
package ANSYS [15] calculates the natural frequencies rather easily due to the
improvement of the preprocessor in making constructive input. Nevertheless, to identify
the mode shapes corresponding to certain frequencies, the solution must be extracted for
each mode shape and classified one by one, which can be very tiresome work. If an analytic
solution for a structure is given, it yields accurate natural frequencies and mode shapes
very fast and easily.

The frequencies and mode shapes from the analytic method were compared with the
results from ANSYS, as well as a free vibration test, to validate the formulation. The
comparison showed that the analytic results agreed well with those from ANSYS and the
test.

2. THEORETICAL FORMULATION

2.1.        

The analysis of the free vibration of a shell/plate combined system can be performed
by the Receptance method. The term Receptance is defined by the ratio of the response
of a structure to the input function. Thus, if the input forcing function is defined, the
response of the system and the receptances can be obtained. Once the receptances are
calculated, the frequency equation can be derived by considering the continuity condition
at the joint. The input forcing function of the shell/plate combined system will be the force
or moment at the joint produced by the constraint of the motion of shell by the plate or
vice versa.

Figure 1 represents the schematic view of a clamped–free cylindrical shell with a plate
attached at the top of the shell. Figure 2 shows the cross-sectional view of the
displacements and the slopes at joining points due to the dynamic transverse line loads
and line moments around the shell exerted by the motion of vibration.

The displacements of the shell subjected to a dynamic loading at the junction can be
expressed by the modal displacement and mode participation factor [16] as

ui (x, u, t)= s
a

k=1

hk (t)Uik (x, u), i=1, 2, 3, (1)

where k designates the mode number, ui represents the displacement of the shell in the axial
direction (i=1), circumferential direction (i=2) and normal to the surface (i=3).

In equation (1), the mode participation factor hk is the root of the following modal
equation for the steady state harmonic response of the shell:

ḧk +2zkvkḣk +v2
khk = fk ejvt, (2)
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Figure 1. Co-ordinate system and notation.

where

fk =1/rhNk gx gu

(F1U1k +F2U2k +F3U3k )a dx du, (3)

Nk =gx gu

(U2
1k +U2

2k +U2
3k )a dx du. (4)

The input forcing functions, F1, F2, F3, in equation (3) are the forces applied at the joint
in the axial, circumferential and transverse normal directions to the shell surface, and are
functions of the co-ordinates x and u. The displacement components, U1k , U2k , U3k , for
the mode k of the clamped–free shell without a plate in the x, y, and z directions can be
represented with a beam function and its derivative, as below:

U1k (x, u)=Af'(x) cos nu, U2k (x, u)=Bf(x) sin nu, U3k (x, u)=Cf(x) cos nu.

(6–8)

Figure 2. Displacement and slope due to dynamic loading at junction.
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Figure 3. Frequency determinant for the circumferential wave number (a) N=0 and (b) N=1 of the shell
with a plate at top.

where A, B, C are arbitrary constants to be determined, f(x) is a beam function that
satisfies the clamped–free boundary condition and f'(x) is the derivative of the function
below [17]:

f(x)= cosh prx−cos prx−Cr (sinh prx−sin prx), (9)

f'(x)= sinh prx+sin prx−Cr (cosh prx+cos prx). (10)

T 1

Natural frequencies (Hz) from analysis, ANSYS and test for shell with an end cap

M=1 M=2
ZXXXXXXXXCXXXXXXXXV ZXXXXXXXXCXXXXXXXXV

N Analysis ANSYS Experiment Analysis ANSYS Experiment

0 589 609 400 2360 2235 2125
1 603 575 425 1365 1271 1088
2 918 904 812 2103 2079 2100
3 739 728 700 1493 1464 1413
4 1060 1059 1050 1400 1400 1388
5 1636 1637 1637 1802 1813 1812
6 2371 2373 – 2477 2494 2500
7 3249 3248 – 3344 3349 –
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Figure 4. Frequencies as functions of circumferential wave number for the shell with a plate at top. Key:
(M=1), —Q—, experimental; —W—, analysis; —R—, ANSYS; —$—, C-F shell; (M=2) —q—,
experimental; —w—, analysis; —r—, ANSYS; —q+—, C-F shell.

By applying the boundary condition in the beam function, Cr and pr can be obtained from
the following equations:

Cr =(sinh prL−sin prL)/(cosh pr +cos prL), cosh prL · cos prL+1=0 (11, 12)

From equation (2), the mode participation factor of mode k can be obtained as below:

hk =
fk

v2
kz([1− (v/vk )2]2 +4z2

k (v/vk )2)
ejvt. (13)

By neglecting the damping of the system, the displacements of the shell, ui in equation (1)
can be rewritten as:

ui (x, u, t)= s
a

k=1

fk

(v2
k −v2)

Uik (x, u) ejvt. (14)

Thus the displacements of the shell in each direction by the external forcing function, fk ejvt

can be represented by the mode summation and displacement components of the shell and
will be used later to calculate the receptances.

By neglecting the other components of the displacements, except the transverse normal
displacement of the shell, the only dynamic excitation to be considered at the junction
(x= x*) will be such a form as equation (15):

F3(x*, u)=F
 3 cos nu d(x− x*). (15)

If one lets

Denom=(A/C)2
imn g

L

0

f'2(x) dx+(B/C)2
imn g

L

0

f2(x) dx+g
L

0

f2(x) dx, (16)
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where i denotes the three roots of the frequency equation for the clamped–free shell and
m and n are the numbers of the axial half waves and circumferential waves of the shell
respectively, then the magnitude of the forcing function in equation (3) can be obtained
as

fk =F
 3f(x*)/rhDenom (17)

Evaluation of equation (4) yields

Nimn = paDenom, for n$ 0. (18)

Figure 5. Mode shapes of the shell with a plate at top.
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T 2

Natural frequencies (Hz) from analysis, ANSYS and test for shell with a plate at its middle

M=1 M=2
ZXXXXXXXXCXXXXXXXXV ZXXXXXXXXCXXXXXXXXV

N Analysis ANSYS Experiment Analysis ANSYS Experiment

0 585 645 (540)* 2102 2361 –
1 708 646 (475) 1372 1347 –
2 599 598 600 2274 2209 2137
3 615 619 620 1791 1688 –
4 1019 1026 1025 1566 1541 1474
5 1614 1621 1615 1889 1889 1850
6 2355 2360 2350 2535 2536 2500
7 3234 3237 3234 3379 3374 3475

* Note: ( ) means the mode shape was not confirmed.

Using equation (17) and equation (14), the dynamic displacement of the shell can be
represented using the mode summation as

u3(x, u, t)= s
a

m=1

s
a

n=0

s
3

i=1

1
(v2

imn −v2)
[F
 3f(x*)f(x)] cos nu ejvt

rhDenom
. (19)

The slope of the shell in the axial direction can be obtained from equation (19) by
differentiation with respect to the axial co-ordinate x.

cS (x, u, t)=− s
a

m=1

s
a

n=0

s
3

i=1

1
(v2

imn −v2)
[F
 3f(x*)prf'(x)] cos nu ejvt

rhDenom
. (20)

Next, the dynamic loading exerted at the junction (x= x*) due to the constraint of the
motion of the shell by the plate would be three directional components of the moments.

Figure 6. Frequencies as functions of circumferential wave number for the shell with a plate at middle.
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Figure 7. Mode shapes of the shell with a plate at middle. Key as for Figure 4.

Among them, small vibration displacement, the only moment M3 that produces a
transverse displacement of the shell and the plate is

M3(x*, u) ejvt =M
 3 cos nu d(x− x*) ejvt, (21)

where d is the Dirac delta function. With this moment loading, the forcing function of
equation (3) can be evaluated from reference [18] as

fk =1/rhNk gx gu

U3k$1a 01(M3(x*, u))
1x 1%a dx du. (22)
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Here, Nk is the same as in equation (18). Neglecting the damping of the structure, the
displacement of the shell due to the moment at the junction can be obtained from equations
(14) and (22)

u3(x, u, t)=− s
a

m=1

s
a

n=0

s
3

i=1

M
 3

(v2
imn −v2)

prf'(x*)f(x) cos nu ejvt

rhDenom
. (23)

Using equation (23), the slope of the shell by the moment at the junction can be calculated
as

cS (x, u, t)= s
a

m=1

s
a

n=0

s
3

i=1

M
 3

(v2
imn −v2)

p2
r f'(x*)f'(x) cos nu ejvt

rhDenom
(24)

The dynamic transverse loading and moment loading at the junction yield the translational
rigid displacement uP and the slope of the plate cP . The final results, which are the same
as those obtained by Huang and Soedel [10], can be rewritten as

uP =−
F
 3 cos u ejvt

arhPv
2 , (25)

cP (a, u, t)=− s
a

m=1

l2apM
 3

rhPNmn (v2
mn −v2) $Jn+1(la)−

Jn (la)
In (la)

In+1(la)%
2

cos nu eivt (26)

2.2.        

When a plate is attached at an arbitrary axial position of a shell, the frequency equation
can be derived by considering the continuity condition at the shell/plate joining point. By
applying the continuity condition at the junction,

$a11 + b11

a21

a12

a22 + b22%6 F
 3
M
 37=0 (27)

To get a non-trivial solution for equation (27), the frequency equation of the combined
system can be derived as

$a11 + b11

a21

a12

a22 + b22%=0 (28)

where aij , bij are the receptances of the shell and the plate, respectively. They are:

a11 = s
a

m=1

s
3

i=1

1
(v2

imn −v2)
f(x*)f(x*)
rhDenom

, a21 =− s
a

m=1

s
3

i=1

1
(v2

imn −v2)
prf(x*)f'(x*)

rhDenom
,

(29, 30)

a22 =− s
a

m=1

s
3

i=1

1
(v2

imn −v2)
p2

r f'(x*)f'(x*)
rhDenom

, (31)
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a12 =− s
a

m=1

s
3

i=1

1
(v2

imn −v2)
prf(x*)f'(x*)

rhDenom
. (32)

The receptances of the plate are the following forms [10]:

b11 =61/arhPv
2

0
for
for

n=1
n$ 17, (33)

b22 = s
a

m=1

pl2a
rhP

[Jn+1(la)− [Jn (la)/In (la)]In+1(la)]2

Nmn (v2
mn −v2)

. (34)

Here,

Nmn = p g
r= a

0 $Jn (lr)−
Jn (la)
In (la)

In (lr)%
2

r dr. (35)

Using equation (27), the moment to the lateral force ratio can be calculated and
consequently, the mode shapes of the plate and shell will be:

wP (r, u)=−F
 3 s
a

m=1

(M
 3/F
 3)pla
v2

mn −v2

[Jn (lr)− (Jn (la)/In (la))In (lr)]
rhPNmn

×[Jn+1(la)− (Jn (la)/In (la))In+1(la)] cos nu, (36)

u3(x, u, t)= s
a

m=1

s
3

i=1

F
 3f(x)
(v2

imn −v2)
{f(x*)− (M
 3/F
 3)prf'(x*)} cos nu

rhDenom
. (37)

2.3.         

If two plates are attached at arbitrary axial positions of x= x1 and x= x2 separately,
the continuity condition will result in

a11 + b11 a12 + b12 a13 a14 F
 3,X1

a21 + b21 a22 + b22 a23 a24 M
 3,X1G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j
a31 a32 a33 + b33 a34 + b34 F
 3,X2

=0. (38)

a41 a42 a43 + b43 a44 + b44 M
 3,X2

From equation (38), the frequency equation for the combined system will be equation (39).

a11 + b11 a12 + b12 a13 a14

a21 + b21 a22 + b22 a23 a24G
G

G

K

k

G
G

G

L

l
a31 a32 a33 + b33 a34 + b34

=0, (39)

a41 a42 a43 + b43 a44 + b44
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where the plate receptances bij are the same as in the equations (33), (34) and aij are the
receptances of shell similar forms to equations (29–32).

3. NUMERICAL RESULTS AND DISCUSSIONS

The theoretical formulations were programmed to be executed by Lahey Fortran [19].
Individual receptances of the plate and shell were calculated and using these values, the
frequencies of the system were obtained for each mode using the numerical method.
Figure 3 shows examples of the frequency determinant (equation 28) as a function of the
system frequency for the shell with a plate attached at its top. The frequencies to be
determined are the zeros of the frequency determinant. The incremental root search finding
and bisection method was employed to get more accurate results and fast iteration. The
mode shapes were constructed with the calculated frequencies. Convergence was examined
by comparing the results as a function of the mode summation in the displacement
expression. The outer normal displacement of the shell, u3, was considered to have
converged if the displacement was represented by a mode summation of more than 30
modes of the axial half wave.

The material properties and dimensions of the shell and plate used were: length of the
shell, L=500 mm, radius of the shell and plate, a=104·5 mm, thickness of the shell or
plate, hs = hP =3 mm, Young’s modulus, E=20·6×104 N/mm2, density of the material,
rp = rs =7·85×10−9 Ns2/mm4 and Poisson’s ratio, n=0·3.

3.1.    –     

The frequencies obtained from the analysis as well as ANSYS and the test are listed in
Table 1. Frequency variation as a function of the circumferential wave number for axial
half wave 1 and two (M=1 and 2) is plotted in Figure 4 to show more clearly the
characteristics of the frequencies for the combined system. In Figure 4, the analysis results
show good agreement with those of ANSYS, while the frequencies from the test are always
lower than the results from the analysis or ANSYS, especially in the lower circumferential
wave range. One of the reasons for these lower values seems to be the boundary effect.
The analysis or ANSYS calculation uses the perfect clamped condition at the bottom of
the shell and shell/plate welding. However, it is hard to realize the perfect clamping
condition in the test due to the efficiency of the bottom clamping of the shell and the
welding of the plate on the shell. It is also shown that at higher circumferential wave
numbers, the frequencies do not differ much from one another.

The frequencies at the circumferential wave number 0 of a cantilevered shell with a plate
become greatly diminished compared to those of a shell without a plate. This is because
the system frequencies of these modes are highly dependent on the frequencies of the plate
owing to the plate dominant modes, as in Figure 5. The lowest frequencies of the plate
for the simple and clamped boundaries are 335 Hz and 692 Hz respectively. Thus, the first
frequency of the combined system appeared between the two boundary conditions of the
plate. The frequencyof the combined system at the circumferential wave number 1 with
an axial half wave 1, i.e., mode (1, 1), seems not to be influenced by the plate because the
mode of the combined system is a shell swaying mode and the plate does not affect the
frequency of this mode of vibration of the shell. However, the frequencies of the combined
system for the mode (1, 2) have a much bigger increase compared to the frequency of the
shell without an end cap. It can be explained that this mode is a shell/plate combination
mode and the shell oval motion is constrained to a great extent by the plate. Thus, the
fundamental frequency of the shell without an end cap is no longer the fundamental
frequency. The mode shapes in Figure 5 are exaggerated to show modes more clearly. The
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effect of the plate on the combined frequencies becomes negligibly small for the higher
circumferential wave numbers, mainly because of the high frequencies of the plate. The
frequency change of the combined system at axial half wave 2 can also be interpreted based
on the mode shapes.

3.2.    –       

For the case of a shell with a plate in its middle, the frequencies from analysis, ANSYS
and test are listed in Table 2 and are shown in Figure 6 as functions of the circumferential
wave number. The frequencies are shown to be almost the same as the case of a shell with
a plate at its top. In Table 2, the frequencies in the bracket are those of the mode not
confirmed from the test because the space in the shell is too narrow to impact on the plate.
The influence of the plate on the frequencies here again becomes insignificant as the
circumferential wave number goes high. The mode shapes are plotted in Figure 7 and are
also exaggerated to show the modes more clearly.

In Figure 6, the frequencies of the clamped–free shell without a plate are decreased
significantly due to the plate attachment at the circumferential mode 0 and 1. Because the
modes of the circumferential wave 0 for the combined system are plate dominant modes,
as in Figure 7, the frequencies of the combined system are expected to be influenced by
the frequencies of the plate. Because the mode (1, 1) is the swaying mode of the shell, the
frequencies of this mode of the shell without a plate are less influenced. On the contrary,
the mode of circumferential wave 2 is the shell oval mode and is somewhat increased due
to the constraint of the shell oval motion by the plate. For higher numbers of
circumferential waves, the effect of the plate on the frequency is shown to be negligible,
as was the case of a shell with a plate at its top.

4. CONCLUSIONS

As an extension of the receptance method to the clamped–free circular cylindrical shell
with a plate attached in the shell at an arbitrary axial position, analytic formulations and
their results were presented. A beam function was assumed to be the displacement function
of the shell in the axial direction. Using the results of the analysis of free vibration of a
clamped–free cylindrical shell by the Rayleigh–Ritz method and that of the circular plate,
a frequency equation of the shell/plate combined system was obtained. Solving the
frequency equation by the numerical method, the natural frequencies were obtained and
the mode shapes were calculated. The frequencies and mode shapes were compared with
those results from the finite element code, ANSYS and the free vibration test in order to
validate the formulation. From the comparison, it was concluded that:

1) The formulations and procedure used herein could be applicable to the clamped–free
shell with a plate attached at an arbitrary axial position.

2) The frequencies of the system were highly dependent on the frequencies of the
dominant modes of the component.

3) The system frequencies for the higher range of circumferential wave numbers are not
much influenced by the plate.
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NOMENCLATURE

A, B, C unknown coefficients of displacement in the x, r, u directions of the shell
a radius of the shell or plate
F3, F
 3 transverse dynamic force, magnitude of the force at junction
fi forces at shell/plate junction at axial, circumferential and transverse normal to the

surface (i=1, 2, 3)
h, hS , hP thickness of shell, plate
k mode number
L length of the shell
m axial half wave number
MP , M
 P dynamic moment, magnitude of the moment at junction
n circumferential mode number
pr eigenvalue of beam function
r radial co-ordinate of the plate
t time
wP transverse normal displacement of plate
u3 transverse normal displacement of shell
ui displacement of shell in i direction (i=1, 2, 3)
Uik displacement components of the shell in i direction for mode k (i=1, 2, 3)
x1 axial co-ordinates of shell where plates are welded
x*1 axial co-ordinates where plate attached at x= x1 of the shell
aij receptances of shell (i, j=1, 2, 3, 4)
bij receptances of plate (i, j=1, 2, 3, 4)
cP , cS slope of plate and shell at axial co-ordinates
d Dirac delta function
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l eigenvalue of plate
hk mode participation factor of mode k
z damping of structure
f beam function
u co-ordinates in the circumferential direction
v, vk , vimn natural frequency, of mode k, of imn mode


